Measurement of methane on a large scale &

its mitigation from smallholder livestock production systems

Enyew Negussie

Natural Resources Institute Finland Genomics & Breeding (Luke), Jokioinen, Finland

PART I

Methane (CH₄) measurement on a large scale

OUTLINE

- Large scale CH₄ measurement
- Experience with F10 Multigas analyzer
 - The technique
 - F10 multigas analyser setup
 - CH₄ measurement profile
- Rationale for F10
 - Estimates of genetic variation for Ch₄
- Some results & summary

Measurement of methane

Different methods of CH₄ mitigation

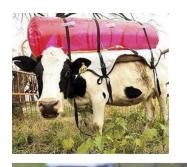
Low-cost, sustanable strategy Utilize natural between animals variation

Successful mitigation requires

Definition of the phenotype

Accurate measurement techniques

Quantify between-animal variation


Accuracy

Accuracy is important to avoid incorrect inferences

Lack of fast & accurate measurement techniques

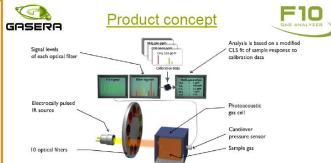
- for large scale assay
- On an individual animal basis June

Difficult & labour intensive

Tedious & time consuming

Slow/ Expensive

unsuitable for large scale measurements – a requisite for genetic studies


Experience with F10 MULTI-GAS ANALYSER

Technique:Photoacoustic IR spectroscopy

Growing interest in fast and hand-held techniques to measure CH4 phenotype

- Photoacoustic infrared technology provides wide linear measurement range and low sample volume
- Cross-compensation is accomplished by using 10 distinct spectral bands in the mid-IR region defined by narrow band-pass optical filters
- High sensitivity with electrically pulsed IR source due to the use of ultra sensitive patented cantilever sensor – no mechanical chopper is used!

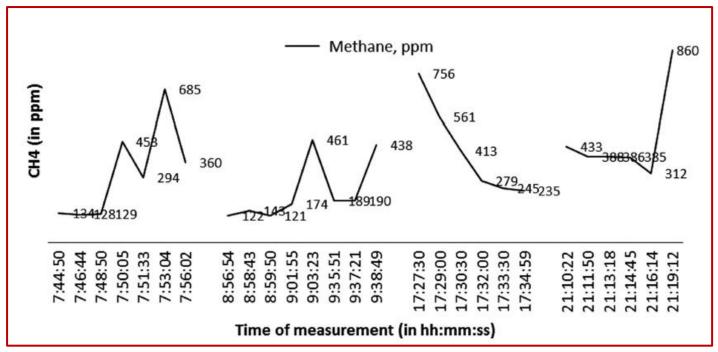
Why photoacoustics?

- Advantages include:
 - High sensitivity with low sample volume (only few milliliters)
 - Extremely wide dynamic range typically from LDL to 10⁵ x LDL
 - Short absorption path length high linearity wide dynamic range
 - Suitability for the measurement of difficult gas matrixes e.g. with high
 - Direct absorption measurement extremely stable long calibration period
 - No consumables required

(Gasera Ltd, Turku, Finland)

Set up of F10 analyser

Daily prodn


CH4 monitoring

Daily feed intake, production etc traits can be recorded

- Gasses measured CH₄,
 CO₂, H₂O & Acetone
- from breath of cows during visit to feeding kiosks
- Multi-point sampling
- CH₄ measurements saved in internal memory, capacity 1yr

F10 CH₄ measurement profile

- Direct CH₄ measurements are highly variable
- It varies within animal, day and time
- CH₄:CO₂ is an alternative phenotype

Validation of the F10 analyser

Animal (2017), 11:5, pp 890–899 © The Animal Consortium 2016 doi:10.1017/S1751731116002718

Non-invasive individual methane measurement in dairy cows

E. Negussie^{1†}, J. Lehtinen², P. Mäntysaari³, A. R. Bayat³, A.-E. Liinamo¹, E. A. Mäntysaari¹ and M. H. Lidauer¹

¹Biometrical Genetics, Natural Resources Institute (Luke), Myllytie 1, 31600 Jokioinen, Finland; ²GASERA Ltd, 20520 Turku, Finland; ³Livestock Technology, Natural Resources Institute (Luke), Myllytie 1, 31600 Jokioinen, Finland

(Received 15 February 2016; Accepted 21 November 2016; First published online 23 December 2016)

Table 3 Concordance analyses for the validation of photoacoustic IR spectroscopy (PAS-F10) against open-circuit calorimetric chamber measurements of methane (CH₄) output in dairy cows

	PAS-F10 CH ₄ measurements					
Parameters	Week before chamber v. chamber	Week after chamber is chamber	Week before and after chamber combined v. chamber			
Sample size	21	21	21			
Mean CH ₄ (PAS-F10) (I/day)	552.6	544.1	548.6			
Interclass correlation coefficient	0.74	0.73	0.87			
95% CI*	0.44 to 0.89	0.41 to 0.89	0.70 to 0.95			
Concordance correlation coefficient [†]	0.70	0.69	0.84			
95% CI [‡]	0.41 to 0.85	0.37 to 0.86	0.65 to 0.93			

PAS-F10 = method for CH4 measurement using the F10 multigas analyzer (GASERA Ltd, Turku, Finland) which is based on PAS technique.

^{*95% (}lower to upper) confidence interval for interclass correlation.
†Concordance analysis (Lin, 1989).

[‡]95% (lower to upper) confidence interval from concordance analysis.

Review: Large-scale indirect measurements (proxies)

J. Dairy Sci. 100:2433–2453 https://doi.org/10.3168/jds.2016-12030

© 2017, THE AUTHORS. Published by FASS and Elsevier Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Invited review: Large-scale indirect measurements for enteric methane emissions in dairy cattle: A review of proxies and their potential for use in management and breeding decisions

E. Negussie,*1 Y. de Haas,† F. Dehareng,‡ R. J. Dewhurst,§ J. Dijkstra,# N. Gengler,∥ D. P. Morgavi,¶

H. Soyeurt, II S. van Gastelen,# T. Yan,** and F. Biscarini††‡‡
*Biometrical Genetics, Green Technology, Natural Resources Institute Finland (Luk
†Animal Breeding and Genomics Centre of Wageningen Livestock Research, PO E
‡Valorisation of Agricultural Products, Walloon Agricultural Research Center (CRA§Scotland's Rural College, King's Buildings, West Mains Road, Edinburgh EH9 3J0
#Animal Nutrition Group, Wageningen University and Research, PO Box 338, NL-6
IlAgriculture, Bio-engineering and Chemistry, Gembloux Agro-Bio Tech, University of
¶UMR1213 Herbivores, INRA, Vetagro Sup, 63122, Saint-Genès-Champanelle, Fra*
**Agri-Food and Biosciences Institute, Hillsborough, Co. Down BT26 6DR, United F
††Department of Bioinformatics, PTP Science Park, Via Einstein Loc. Cascina Coc
‡‡Faculty of Bioscience and Technology for Food, Agriculture and Environment, Ur

METHOD	ROBUST	1500	THROUGHPUT	INTRUSTYE	ACCURANCY	
Respiration chamber	4		₽	0	△	
GreenFeed	d	∇	0	₾	凸	
SF,	4	\$7	Ø	0	凸	
Sniffer methods (CH _c /CO _c)	△	₾	Δ	Δ	∇	

Combining proxies upto ~35% ncrease in accuracy International Green

J. Dairy Sci. 105 https://doi.org/10.3168/jds.2021-20158

© 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Integrating heterogeneous across-country data for proxy-based random forest prediction of enteric methane in dairy cattle

Enyew Negussie, 1* © Oscar González-Recio, 2 Mara Battagin, 3 Ali-Reza Bayat, 4 Tommy Boland, 5 Yvette de Haas, 6 Aser Garcia-Rodriguez, 7 Philip C. Garnsworthy, 8 Nicolas Gengler, 9 Michael Kreuzer, 10 Björn Kuhla, 11 Dan Lassen, 12 Nico Peiren, 13 Marcin Pszczola, 14 Dan Lassen, 15 Angela Schwarm, 15 Hélène Soyeurt, 9 Amélie Vanlierde, 16 Tianhai Yan, 17 and Filippo Biscarini 18 Dan Lassen, 18 Dan Lassen, 19 Dan Lassen,

- An intersection between climate change, machine learning and precision agriculture, and focuses on the application of advanced predictive modelling to tackling greenhouse gas emissions from livestock farming.
- Use of on-farm routinely recorded data coupled with state-of-the-art machine-learning algorithms has the potential to yield very accurate predictions of methane emissions.
 - This provides a great potential for building a globally representative large scale CH₄ emission database on the basis of which accurate regional and intercontinental inventories as well as concerted global greenhouse gas mitigation strategies could be developed.

Summary

- Comparison of hand-held and portable techniques against the gold stanadard (respiration chamber)
 - have shown mixed results
- Although several techniques have been tried & developed, the journey to find the most accurate technique for large scale CH₄ measurements, especially on an individual animal basis continues.

PART II

Mitigation of methane from smallholder livestock production systems

OUTLINE

- Emission from smallholder production systems
- LS production efficiency and emission
- Towards low carbon livestock FAO
- ICI Ethiopia dairy genetics project (Finnish Gov't & BMG financed) project
 - Project components
 - Expected effect on emission by 2035
- Other genetic tools to reduce emissions
 - reduce wastage & genetics of feed efficiency

Increase in production: function of LS numbers

Indigenous animals

- Form the majority of production animals
- Low producers
- Increase in production is mostly by increasing number of animals
 - social status of a person or a family measured by the number of animals he owns
 - Such beliefs/practices have unfavourable effects LS system emissions

Increase in efficiency 1st step towards low carbon livestock

FAO 2019: Practical actions towards lowcarbon livestock

Action 1. Boosting efficiency of livestock production and resource use

Action 2. Intensifying recycling efforts and minimizing losses for a circular bioeconomy

Action 3. Capitalizing on nature-based solutions to ramp up carbon offsets

Action 4. Striving for healthy, sustainable diets & accounting for protein alternatives

Action 5. Developing policy measures to drive change

ICI Ethiopia dairy project

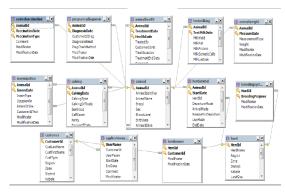
Population ~110 mill Cattle pop ~60 mill Dairy cows ~10-12 mill Milk prod/lact ~ 306 liter

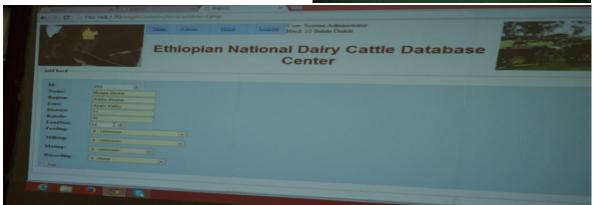
- 1. Establish a dairy herd performance recording and advisory system
- 2. Build a modern computerized data base management facility at NAIC
- 3. Develop a locally adapted dairy cattle breeding strategies
- 4. Strengthen the institutional and organizational capacity of NAIC

1. Dairy herd performance recording & farmers advisory system

2 National animal identification system

Compatible with ICAR Regulations



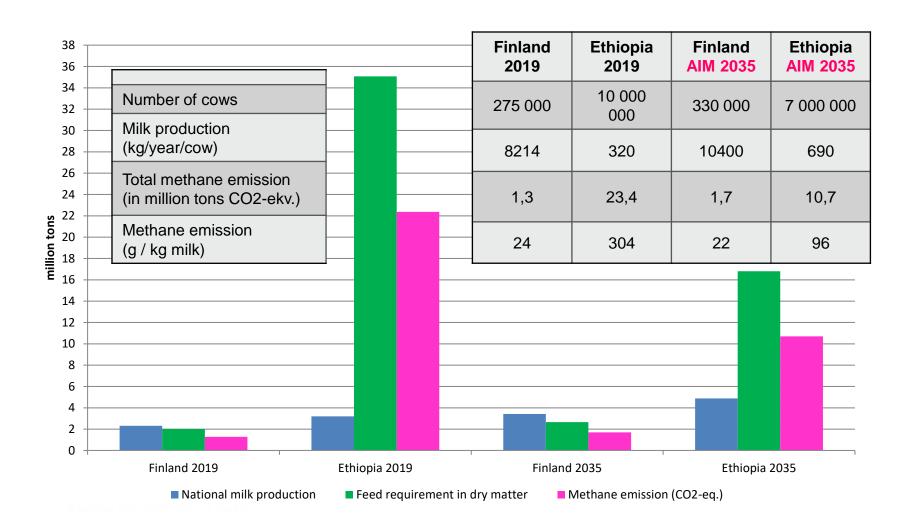


3 National Dairy Cattle Database Centre

Computational facility

4 National genomic evaluation and training students

Breeding Values for Top Bulls									
National Ethiopian Genetic Evaluation for Dairy Cattle (Version 1.1)									
Evaluation Run: December 2018									
TOP BULLS		Consider for Selection:			Reliability:				
		yes			high	0.99 - 0.80			
Population Mean = 100		maybe			medium	0.79 - 0.60			
10 Index Points = 1.6 ltr milk/day		no			moderate	0.59 - 0.30			
					low	0.29 - 0.00			
					Breeding	Reliability of			
	Birth			Num.	Value Index	Breeding			
Bull ID	Year	Breed	Herd	Progeny	for Milk	Value			
3099	1900	Holstein	33	25	121	0.70			
2176	1900	Holstein	33	22	120	0.68			
7033	1900	Holstein	33	11	117	0.51			
3868	1900	Holstein	33	13	117	0.55			
10-091	1998	Holstein	33	32	116	0.75			
7003	2007	Holstein	33	16	115	0.60			
10-017	1993	Holstein	33	6	114	0.27			
7005	1900	Holstein	33	11	114	0.51			
10-038	1994	Holstein	33	24	113	0.69			
10-329	1991	Holstein	33	9	113	0.46			


Project partners

22

Summary

- Sustainable intensification of production will be one sustainable means to reduce LS system emissions in DC
- ➤ There is a need for a lot of work to understand the diverse productions systems and develop suitable mitigation strategies
- ➤ A global problem needs global solutions.

 Interdisciplinary approach is the best way forward.

Thank you!

