

#### ESTIMATING METHANE EMISSIONS FROM DJALLONKE SHEEP USING GREENFEED IN BURKINA FASO

**Oualyou W. S. Ouermi<sup>1</sup>**, Nouhoun Zampaligre<sup>1</sup>, Michel Kere<sup>2</sup>, Kadiatou Traore<sup>1</sup>, Gildas L. M. Yoda<sup>1</sup>, Isidore B. Gnanda<sup>1</sup>, Valerie Bougouma<sup>2</sup>, Mulubran Balehegn<sup>3</sup>, Adesogan Adegbola<sup>3</sup> and Ermias Kebreab<sup>4</sup>

<sup>1</sup> Institute of Environment and Agricultural Research, Farako-Ba station, Bobo-Dioulasso, BFA

- <sup>2</sup> University Nazi Boni, Bobo Dioulasso, BFA
- <sup>3</sup> Feed the Future Innovation Lab for Livestock System, University of Florida, USA
- <sup>4</sup> University of California, Davis, USA















#### Plan

- Introduction (3/3)
- Objective (1/1)
- Materiels & Methods (4/4)
- Results and Discussion (4/4)
- Conclusion (1/1)

















# Introduction (1/3)

- Global climate change (GCC) is a main concern and manifestations are becoming more and pronounced
- Impact for Africa : 22% drop in crop yield by the year 2050 (IPCC, AR5 (2014); AR6 (2021))
- Global effort against Climate change is vital
- GCC is primarily caused by greenhouse gas (GHG) emissions (IPCC, 2013) : CO<sub>2</sub>, CH<sub>4</sub> and NO<sub>2</sub>



**Figure 1**: Major GHG and contributions by various sectors (Zaman et al., 2021)

















#### Introduction (2/3)

• Global effort against Climate Change : GHG emission needs to be reduced

Why enteric CH<sub>4</sub> emissions are of major importance in the global effort against climate change?

- CH4 contributes significantly to global GHG emissions : estimated 14% of worldwide GHG (Tubiello et al., 2014)
- Global Warming Potential (GWP): 28 times that of carbon dioxide over a 100-year period (Kebreab and Fouts, 2021)
- Emissions rose more than 50% in the last 60 years and are expected to continue rising (FAO, 2017)
- Negative impact on productivity : losses to the animal of 3 –12% of digested energy (Johnson and Johnson, 1995)















#### Introduction (3/3)

- It's crucial to measure enteric CH4 emissions, to develop a robust inventory or to develop strategies
- Considerable research in accurately predicting enteric methane in ruminant production systems, in developing countries:
  - little is known of Sub-Saharan Africa (SSA) :
  - Mainly focus on cattle
  - However, effectiveness of the strategy is more likely to differ between ruminant types (Gastelen et al., 2019)
    - Paucity of data for Small Ruminants (SR) which contributes about 6.5% of the world emissions

Few data available : direct quantification methods are needed for more accuracy in CH4 emissions (Ndao et al., 2018).















#### Objective

Make accurate data available on enteric CH4
 emissions of SR in west Africa

• Enteric methane emissions of Djallonke sheep

 Effect of feed energy concentration on enteric CH4 emissions



**Figure 2:** Geographical distribution of Djallonke sheep in Africa (Meyer, 2002).















### Materials & Methods (1/4)

#### ✓ GreenFeed technology to directly measure emissions

- One of the 3 main measurement techniques for CH<sub>4</sub> inventories Respiration Chambers (RC), the Sulfur HexaFluoride (SF6) tracer (Hristov et al., 2018).
- Its an automated head-chamber system, using bait to encourage voluntary visit (3 to 7 min), emissions detected by non-dispersive near-infrared analyzer of breath spot sampled
- Data accuracy : confirmed by several authors (Hristov et al., 2018; Huhtanen et al., 2019; McGinn et al., 2021).
- 1st use of GF for SR in Africa



















# Materiels & Methods (2/4)

- Sites description, treatments and experimental design
  - Farako-Bâ's Research Station: southwestern region of BF,South Sudanese's climate, 2 seasons (dry and rainy),Rainfall ranged from 723.7 to 1303.7 mm
  - 4 Iso-nitrogenous dietary treatments, formulated based on energy supply :Diet 1=Maintenance(M), Diet 2= M\*1.25, Diet 3= M\*1.5 and Diet 4=M\*1.75
  - 4×4 Latin square design, one week's data collection per period Hristov et al. (2015) and Martin et al. (2020).









**Figure 3:** Geographical location of Farako-Bâ's Research Station (Ouedraogo, 2019)









### Materiels & Methods (3/4)

- ✓ Animals and trial implementation
  - Sixteen (16) males of Djallonke sheep tagged with RIFD Tag, 8 months old, body weight close to 20 kg, horns have been trimmed
  - Covered barn with open sides, 16 metabolic cages, an alleyway and GF unit
  - Two weeks' adaptation period to GreenFeed unit and metabolic cages



















# Materiels & Methods (4/4)

#### ✓ Data collected and Analyses

- Feed intake measurement and Animals Performance
- Gas emission measurement :  $CO_2$ ,  $H_2$  and  $O_2$ Calibration and  $CO_2$  recovery test performed, 2 set of gas emissions recorded per period, 8 measures in a 24 hour feeding cycle, staggered in time over a 3-day period (Hristov, 2015)
- Chemical analyses : Energy (Gross and Metabolizable), Proteins , Fibers, ....
- Statistical analyses : Excel (Microsoft corporation).
  R (Statistical Sofware).

















# Results and Discussion (1/4)

✓ CH4 production

Average CH<sub>4</sub> production : 18,7 g CH<sub>4</sub> / head / day

Value lower than literature : BW, DMI....

- Pelchen et Peters, 1998 : 22,15 g/day
- Pinares-Patiño et al., 2013: 24.6±3.2 g/day
- Rowe et al., 2019: 24.0±8.3 g/day

 $CH_4$  was significantly different in the treatments except between M1.25 and M1.5, same between M1.5 and M1.75

CH<sub>4</sub> production followed the DM intake Muetzel and Clark (2015) : DMI explained 80% of CH4 production variation per animal







Mean  $CH_4$  (g/d) in the 4 treatments of the study and comparison between treatments

|                            | Mean     | SE     |         |
|----------------------------|----------|--------|---------|
| Maintenance (M)            | 15.1     | 1.014  |         |
| Maintenance × 1.25 (M1.25) | 18.9     | 0.999  |         |
| Maintenance × 1.50 (M1.50) | 20.5     | 0.999  |         |
| Maintenance × 1.75 (M1.75) | 21.3     | 1.032  |         |
| Contrasts                  | estimate | SE     | P value |
| M – M1.25                  | -0.586   | 0.0934 | 0.0002  |
| M – M1.50                  | -1.89    | 0.0934 | <.0001  |
| M – M1.75                  | -2.97    | 0.0981 | <.0001  |
| M1.25 – M1.50              | -1.31    | 0.0911 | 0.1863  |
| M1.25 – M1.75              | -2.38    | 0.0959 | 0.0265  |
| M1.5 – M1.75               | -1.07    | 0.0962 | 0.7495  |









### Results and Discussion (2/4)

 $\checkmark\,$  Relationship between CH4 production  $\,$  and Dry Matter Intake  $\,$ 



**Figure 4:** Linear relationship between Methane production and Dry matter intake















 Linear increase in CH<sub>4</sub> emissions as a function of dry matter intake

Ellis et al. (2007 **DMI is a key driver of CH4** 



# Results and Discussion (3/4)

Comparison of gas exchange, intakes of dry matter (DMI), metabolizable energy (MEI) and gross energy intake (GEI)

| Item (units          | 5)      | Treatment*        |                     |                     |                    |  |
|----------------------|---------|-------------------|---------------------|---------------------|--------------------|--|
|                      |         | Μ                 | M1.25               | M1.5                | M1.75              |  |
| CO <sub>2</sub>      | (g/day) | 586 <sup>a</sup>  | 651 <sup>bc</sup>   | 689 <sup>c</sup>    | 759 <sup>d</sup>   |  |
| O <sub>2</sub>       | (g/day) | 434 <sup>a</sup>  | 478 <sup>ab</sup>   | 514 <sup>b</sup>    | 557 <sup>bc</sup>  |  |
| CH <sub>4</sub>      | (g/day) | 15.1ª             | 18.9 <sup>bc</sup>  | 20.5 <sup>cd</sup>  | 21.3 <sup>d</sup>  |  |
| DMI                  | (g/day) | 541ª              | 612 <sup>bc</sup>   | 632°                | 665 <sup>d</sup>   |  |
| GEI                  | (MJ/d)  | 9.78 <sup>a</sup> | 11.10 <sup>bc</sup> | 11.41 <sup>cd</sup> | 11.80 <sup>d</sup> |  |
| MEI                  | (MJ/d)  | 4.20 <sup>a</sup> | 4.79 <sup>b</sup>   | 6.10 <sup>c</sup>   | 7.17 <sup>d</sup>  |  |
| CH <sub>4</sub> /GEI | (g/day) | 2.38              | 2.07                | 1.99                | 1.92               |  |
| STATES AGE           |         | BILLe             | Melinda             | I                   | CDAV               |  |

GATES foundation

UNIVERSITY OF CALIFORNIA

 Linear decrease of CH<sub>4</sub> emitted per unit of energy consumed



Figure 5 : Linear decrease of  $CH_4$  emitted per unit of energy consumed









### Results and Discussion (4/4)

#### ✓ CH<sub>4</sub> conversion factor (CH<sub>4</sub> /GEI ; Ym)

#### Descriptive statistics of measured and calculated data

|                                          | Mean  | Median | SD    | Minimum | Maximum |
|------------------------------------------|-------|--------|-------|---------|---------|
| Dry matter intake (g/d)                  | 611   | 605    | 88.1  | 438     | 797     |
| Gross energy intake (MJ/d)               | 11.0  | 10.9   | 1.56  | 7.98    | 14.1    |
| Metabolizable energy intake<br>(MJ/d)    | 5.50  | 5.36   | 1.33  | 3.54    | 8.55    |
| $CH_4$ production (g/d)                  | 18.9  | 19.1   | 4.53  | 8.15    | 26.8    |
| $CO_2$ production (g/d)                  | 668   | 670    | 131   | 422     | 1000    |
| $O_2$ consumption (g/d)                  | 494   | 478    | 97.4  | 291     | 719     |
| Bodyweight (kg)                          | 22.9  | 22.4   | 3.50  | 16.6    | 30.1    |
| Adjusted MEI (MJ/kg BW <sup>0.75</sup> ) | 0.532 | 0.520  | 0.117 | 0.362   | 0.726   |
| Adjusted HP (MJ/kg BW <sup>0.75</sup> )  | 0.688 | 0.686  | 0.092 | 0.494   | 0.871   |

• Methane energy accounted for **9.6%** of the GE

High compare to 7.4% (Zhao et al., 2016).

the amount and quality of forage

NDF: 75.1% VS 39.2% (Zhao et al., 2016).

High NDF  $\longrightarrow$  high CH<sub>4</sub> emissions: Niu et al., 2018

















#### Conclusion

- Valuable data to estimate enteric CH<sub>4</sub> emissions from Djallonke sheep
- Valuable data on enteric CH<sub>4</sub> Conversion Factor (CH4/GEI)
- Contribute calculating national inventory of emissions in West Africa

















# THANK YOU FOR YOUR ATTENTION













