

Climate smart approaches for reducing GHG emission from livestock in developing countries

Mulubrahan Balehegn

Feed the Future Innovation Lab for Livestock Systems | Animal Science | Photo credit. N. Zampaligre Food Systems Institute, IFAS, University of Florida

Livestock's contribution to GHG

BILL& MELINDA

GATES foundation

Why care about livestock emission from developing countries?

10 600 9 500 8 7 400 Million tonnes FPCM kg CO2-eq.kg FPCM⁻¹ 6 5 300 4 200 3 2 100 1 F & St 4513 0 H. Euolo Aussien Feer South des 0 N. Anerica E. Europe World | MEN.4 Oceania ž 5 Enteric, CH Postfarm, CO₂ Fertilizer & crop residues, N₂O Manure management, CH Feed, CO₂ Milk production Manure management, N₂O LUC: soybean, CO, Applied & deposited manure, N₂O Direct & indirect energy, CO.

FIGURE 9. Regional variation in cattle milk production and GHG emission intensities

Source: GLEAM.

Not all systems in developing countries are the same

Total GHG among production systems (Kg of CO₂-eq/year)

(Berehe et al., 2020)

Climate smart livestock

Climate smart interventions

- Breeding more productive animals
- Improving diets so that animals produce more protein with less feed and lower emissions
- Better manure management (e.g. composting)
- Better herd management to improve output, including better herd health management with less reliance on antibiotics
- Better management of grassland (e.g. sowing improved varieties of pasture, rotational grazing)
- Range and pastureland rehabilitation to improve biomass yield carbon stocks

Feed provides an excellent opportunity for climate smart interventions ?

- Feed provides opportunities for multiple gains (economic, food security, and GHG reduction)
 Global emissions from animal agriculture production
 Global emissions from animal agriculture production
 Global emissions from animal agriculture production
 Global emissions from animal agriculture production
- A reduction of CH₄ emission by 15-30% by feed interventions (Knapp et al., 2014).
- 58% of all rangeland in Africa degraded (UNEP, 1992)
- Rangeland rehabilitation the most opportune intervention for dual win increase in supply of quality feed and improve carbon stock and sequestration)

(FAOSTAT, 2019)

FEEDIFUTURE

(Balehegn et al., 2020)

Climate-smart feed interventions

Impact of CS interventions

% reduction in methane

Feed additives and Inclusion of browse Climate smart feed plant metabolites (6 studies) systems (4 studies) (18 studies)

Impact of integrated climate smart interventions

Emission intensity

(Berhe et al., 2020)

Impacts of rangeland rehabilitation interventions

Impacts of rangeland rehabilitation interventions (values are percentage increase compared to untreated areas n=234)

(Balehegn et al., 2019)

Restoring degraded land - Ethiopia

FEED II project

 Constructed dams, rehabilitated a gully, sowed plants and forage.

Forage yields nearly doubled from 2016 to 2017.

Value of harvested forage (\$40,000)

Healthier more productive livestock.

Farmers' incomes increased by 20%

Tigray: Livestock/environment integrated interventions

UNIVERSITY of FLORIDA

Feed additives and plant metabolites				
Technologies/ interventions	Impact (% reduction in GH_4)	Relevance and practicality to developing countries	References	
(Lemon grass) (Cymbopogon citratur) supplement	33%	Practical	(Vázquez-Carrillo et al., 2020).	
Extracted condensed tannins	30%	Practical, trade-off I reduction in digestibility and reduction in CH ₄ emission. Research (in vitro) has mixed results	.(Abdalla et al., 2012)(Tavendale et al., 2005)(Tiemann et al., 2008)(Waghorn, Tavendale and Woodfield, 2002)	
Tea Saponins	13 to 26%	Possible, but tea seed meal is expensive	(Hu et al., 2005)	
Garlic oil	20-74%	Possible, more research required on impact on palatability and cost	(Busquet et al., 2005)(Macheboeuf et al., 2006)(McAllister and Newbold, 2008) (Mitloehner et al., 2020)	
Organic acids	16%-75%	Practical, required in limited amount	(Foley et al., 2009)(Wallace et al., 2006)	
Essential oils	10- 20%	Practical, required in small amounts,.	(Mitloehner et al., 2020)	
lonophores	30%	Expensive and illegal	(Guan et al., 2006)(Martin, Morgavi and Doreau, 2010) (Guan et al., 2006)	
Lipids and fats	9%	Possible	(Eugène et al., 2008)	
Chloroform	50%	Safety hazards	Farooq Iqbal et al., 2008)	
3-NOP (3- nitrooxypropanol	30%	Possible feed additive	(Mitloehner et al., 2020)	

Inclusion of browses				
Technology/ intervention	Impact (reduction in CH ₄ or CO ₂ -eq sequestered)	Relevance to developing countries	References	
Replacement of grasses by legumes	10%	Practical	(McCaughey, Wittenberg and Corrigan, 1999)	
Replacement of crop residues by browse	Results in mitigation of 143 Mt CO ₂ -eq per year).	Traditional practice	(Thornton and Herrero, 2010)	
Tanniniferous browse-Mimosa caesalpineaefolia	31.2%	Common	(Abdalla et al., 2012)	
Tanniniferous browse (Leucaena leucocephala)	20%	Common	(Montoya-Flores et al., 2020)	
Saponine and tannin containing browse (Samanea Saman).	57%	Traditional practice	(Salazar et al., 2018)	
Enterolobium Cyclocarpum and Gliricidia sepium leaves and pods	6.3%	Common	(Molina-Botero et al., 2019)	
Tannifereous plant-Terminalia chebula (seed pulp)	13%	Common	(Patra et al., 2011)	

Climate smart feed interventions

Intervention/ technology	Impact (reduction in CH_4 or CO_2 -eq sequestered)	Applicability	References
Harvesting forage at optimal stage of maturity	5-6.5%	Practical	(Robertson and Waghorn, 2002)
Pasture improvement (Improving botanical composition of high- quality forage species)	14%	Practical.	(Dini et al., 2018)
Crop breeding	10%	Possible to introduce improved varieties.	(Mitloehner et al., 2020;)
Cut and carry system as compared to extensive grazing	475 _144 g CO2 equiv. m_2 year_1 under cut and carry system compared to 228 _ 283 g CO ₂ equivalent m_2 year_1 in extensive grazing	Practical	(Koncz et al., 2017)
Silvopastures	Emission of 1.7 kg CO ₂ -eq. per kg milk lowest compared to other farms	Practical	(Gaitán et al., 2016)
Silvopastures	Total C 90% compared to only 60% in native forests	Practical	(Amézquita et al., 2010)
Agroforestry	Increase in topsoil C by1.6 Mg C ha–1 y–1 compared to continuous maize cropping	Practical	(Mutuo et al., 2005)
Exclosures	Increase in carbon stock by 187.24% compared to freely grazed area	Practical in degraded rangelands	(Balehegn et al., 2019)
Silage making	A 33% reduction in CH ₄	Practical with affordable inputs	(Benchaar, Pomar and Chiquette, 2001)(Shingfield, Jaakkola and Huhtanen, 2002)
Urea treatment of crop residues	20-10%	Practical	(Dong et al., 2004)

Benefits of improved forages in sub-Saharan

72 study meta analysis

Paul, et. al (2020)

Cowpea in Nigeria, Burkina Faso

Improved cowpea adoption in a 2020 survey of 1,525 farms

	Adopters (38%)	Non -adopters (62%)	P value	% change
Cowpea yield, kg/ha	6.3	4.9	**	26.4
Net returns, Naira/ha	10.3	6.4	*	61.4
Total variable costs, Naira/ha	10.0	8.7	*	14.4
*– D/ 0 05· ** D/0 01				

I ha of improved cowpea can give an extra 50 kg of meat, plus 300 kg more grain due to improved soil fertility and animal manure.

Tarawali et al, 2003; Manda et al., 2020

Brachiaria in Kenya

Brachiaria adoption effects on milk yield (L/cow/yr) in two counties

- Thousands of E. African dairy farmers switching from Napier to climate-smart Brachiaria
- Trap crop for stem borers
- 27.6 to 40% greater milk yield among adopters
- Greater yield, crude protein, N efficiency than Napier; acid soil tolerant, promotes soil health
- Tolerates grazing, cut and carry, and is easily established and disease resistant

Maina et al., 2020

Pearl millet in Niger

- Drought tolerant dualpurpose varieties ideal for semi-arid areas
- Higher crude protein, DM yield than local varieties
- Newer more digestible brown midrib varieties

Bado et al., 2020

Adoption of improved varieties in 2009

Country	Area, million ha	Area (%)	
Burkina Faso	1.2	2.6	
Mali	1.5	31.1	
Niger	3.7	25	
Nigeria	1.0	34.5	

Ndjuenga et al., 2015

Ficus thonningii in Ethiopia

- Easy to establish, matures in < 5 yr, withstands lopping, quick leaf regrowth, drought tolerant
- High CP (< 21%), DM digestibility (< 85%), yield
- Up to 5x the yield of other fodder trees
- Adopted by more than 20,000 households
- Contributed to rehabilitation of grazing lands
- Increased biodiversity (wild birds and weeds)

Integrated solutions for productivity and environment wins

GHG	KENYA	MILK	
-9.6	SUPPLEMENTATION WITH CONCENTRATE	8.9	
-12.5	ESTABLISHMENT OF FODDER GRASSES AND LEGUMES	16.0	
-9.8	FEED CONSERVATION (SILAGE)	9.0	
-11.3	DEWORMING	14.5	
-17.1	CONTROL OF EAST COAST FEVER	25.0	
-13.9	ARTIFICIAL INSEMINATION	13.3	
	http://www.fao.org/in-action/e	enteric-	
BILL&MEL	methane	ILRI	UFIIFAS

GATES foundation

UNIVERSITY of FLORIDA

Take home messages

- The need for integrated assessment, GHG quantification missing from most studies.
- Several examples of working intervetions exist, but most GHG reduction strategies need refining

Economic, environmental and long-term efficacy merits, especially considering the complex biophysical and social settings of smallholder producers in developing countries.

- Need for scaling of successful technologies
- Greater policy support and synergy in efforts of governments, donors, private sector are needed

Specific recommendations

- Balance animal diets with low inclusion of roughages and higher incorporation of forage grasses/legumes and energy concentrates
- Improve the quality of crop residues through various treatments
- Use crop cultivars with superior residue quality (selection, breeding)
- Reduce particle size of roughages (chopping, grinding) before feeding
- Use feed additives such as organic acids, lipids, fats, yeast, enzymes and 3nitrooxy propanol (3-NOP) that can reduce enteric methane production after assessing their techno-economic feasibility and practicality of field application
- Promote climate smart livestock systems (silvopasture, range and pastureland rehabilitation, integrated with breed improvement and manure management).

FEEDIFUTURE

The U.S. Government's Global Hunger & Food Security Initiative

www.feedthefuture.gov

