Advances in technologies for reducing enteric methane emission from livestock

Ermias Kebreab Professor and Associate Dean, University of California, Davis

Environmental Impact (Global)

Livestock and Manure (5.8%)			
Agricultural soils (4.1%)			
Rice cultivation (1.3%)			
Crop burning (3.5%)			
Deforestation (2.2%)			
Cropland (1.4%)	Grassland (0.1%)		
Energy (73.2%)	Agriculture, Forestry and l	and use (18.4%) Waste (3	3.2%) 🔴 Industry (5.2%)

Our World in Data

GLOBAL METHANE BUDGET 2008-2017

Methane ~70% Livestock GHG

Table 5-1: Emissions from Agriculture (MMT CO₂ Eq.)

Gas/Source	1990	20	05	2014	2015	2016	2017	2018
CO ₂	6.7		.5	7.5	7.8	7.1	7.6	7.7
Urea Fertilization	2.0		3.1	3.9	4.1	4.0	4.5	4.6
Liming	4.7		1.3	3.6	3.7	3.1	3.1	3.1
CH₄	217.6	23	8.8	234.3	241.0	245.3	248.4	253.0
Enteric Fermentation	164.2	16	3.9	164.2	166.5	171.8	175.4	177.6
Manure Management	37.1	5	L.6	54.3	57.9	59.6	59.9	61.7
Rice Cultivation	16.0	1	3.0	15.4	16.2	13.5	12.8	13.3
Field Burning of Agricultural Residues	0.3).4	0.4	0.4	0.4	0.4	0.4
N ₂ O	330.1	32	9.6	366.7	365.8	348.1	346.2	357.8
Agricultural Soil Management	315.9	31	3.0	349.2	348.1	329.8	327.4	338.2
Manure Management	14.0	1	5.4	17.3	17.5	18.1	18.7	19.4
Field Burning of Agricultural Residues	0.2).2	0.2	0.2	0.2	0.2	0.2
Total	554.4	57	i.9	608.6	614.6	600.5	602.3	618.5

Note: Totals may not sum due to independent rounding.

EPA, 2020

Methane Mitigation Strategies

Adult (direct)

vaccines

- Direct inhibitors of methanogenesis or methanogenic archeae (A. taxiformis and 3-NOP)
 Anti-methanogen
- Adult (indirect)
- Chemical composition of the fibre
- Concentrate level in ration
- Lipids and plant extracts
- Alternative metabolic pathways and hydrogen sinks (for example, favouring propionate)
- Antimicrobials (monensin)
- Supplementation of alternative electron sinks (sulfate and nitrate)

Birth

- Defaunation
- Modulation of rumen microbiome development from birth (historical contingency effects)

Prior to birth

- Breeding towards low methaneemitting animals
 Breeding towards
- modulation of specific microbiome composition

Potential Solutions - Lipids

SUSTAINABLE AGRICULTURE at

Potential Solutions - Diet

SUSTAINABLE AGRICULTURE at UCDAVIS

Pressman and Kebreab, in review

Potential Solutions - Diet

traditional amended

SUSTAINABLE AGRICULTURE at UCDAVIS

Methane Mitigation Strategies

Adult (direct)

Direct inhibitors of methanogenesis or methanogenic archeae (A. taxiformis and 3-NOP)
Anti-methanogen vaccines

Adult (indirect)

- Chemical composition of the fibre
- Concentrate level in ration
- Lipids and plant extracts
- Alternative metabolic pathways and hydrogen sinks (for example, favouring propionate)
- Antimicrobials (monensin)
- Supplementation of alternative electron sinks (sulfate and nitrate)

Birth

- Defaunation
- Modulation of rumen microbiome development from birth (historical contingency effects)

Prior to birth

- Breeding towards low methaneemitting animals
 Breeding towards
- modulation of specific microbiome composition

Feed Additives

Clarity and Leadership for Environmental Awareness and Research at UC Davis

SUSTAINABLE AGRICULTURE at UCD

Honan et al. 2021

Macroalgae – in Vitro

Kinley et al., 2016

Macroalgae – in Vivo

Follow-up Questions

- Would the microbes in the gut get used to it?
- Would the seaweed be stable over a long time in storage?
- Would the taste be affected?
- Or would the seaweed affect the cows' health or milk production?

Seaweed cuts emissions 80% - Beef

Roque et al. 2021

Seaweed - Mode of Action

EdgeR Differential Gene Expression

Improved ADG - Beef

(Kinley et al. 2020)

What next? Growing Seaweed

Blue Ocean Barns

3NOP cuts emissions 32% - Dairy

3NOP – Early Life Intervention

Meale et al., 2021

19

SUSTAINABLE AGRICULTURE at UCD

3NOP – Mode of Action

Duin et al. 2016

Plant Bioactive Compounds - EO

- Based on garlic and citrus extracts
- Added at 15 g/d
- 23% reduction after 12 weeks
- More work needed to determine effectiveness

Roque et al. 2019

Bioactive Compounds – Tannins/EO

- Lemongrass at 2% DM reduced emissions 33% (MX)
- CA grown lemongrass did not reduce methane
- Main differences was in tannin and Essential oils concentration
- Chamomile no effect

Plant Bioactive Compounds - Tannins

	Treatment			
Parameter ²	CON	DGM	EGM	
Number of cows CH ₄ (g/cow per day)	11 470 ^a	10 375 ^b	9 389 ^b	
CH ₄ (g/kg of DMI)	26.1 ^a	$20.2^{e}_{.}$	21.5 ^b	
CH₄ (g/kg of milk) Milk yield (kg/d)	35.3 ⁿ 13.4 ^{nb}	26.1 ^b 15.0 ⁿ	$\frac{35.2^{a}}{11.5^{b}}$	

Moate et al. 2014

Short Sheep Vineyard and micro winery

TT 1 <i>1</i>		Diet ¹		2
Variate	CON	RGM	WGM	SEM ²
Number of cows	11	10	10	-
Total DMI ⁵ (kg/d)	18.4	18.8	18.6	0.29
Methane emission (g/d)	383	326	326	12.9
Methane intensity (g/kg ECM ⁶)	13.3	12.8	12.5	0.47

Moate et al. 2020

Methane Mitigation Strategies

Adult (direct)

- Direct inhibitors of methanogenesis or methanogenic archeae (A. taxiformis and 3-NOP)
 Anti-methanogen
- Anti-methanoge vaccines

Adult (indirect)

- Chemical composition of the fibre
- Concentrate level in ration
- Lipids and plant extracts
- Alternative metabolic pathways and hydrogen sinks (for example, favouring propionate)
- Antimicrobials (monensin)
- Supplementation of alternative electron sinks (sulfate and nitrate)

Birth

- Defaunation
- Modulation of rumen microbiome development from birth (historical contingency effects)

Prior to birth

- Breeding towards low methaneemitting animals
 Breeding towards
- modulation of specific microbiome composition

Diet/Nutrition/Genetics

Methane Intensity

Conservative estimate

- Primarily enteric methane
- Reductions on CO₂ $\& N_{2}O$

Per Unit of Milk Production

Improving Production/CH₄ Intensity

Improving Production/CH4 Intensity

ዋና ምናሌ	_		
	A MAXIMIZE	የወተት አምራቸ መጠን ከፍተኛ ማሳደগ	
	BLC	እነስተኛ የአቅርቦት መጠን: ላባ / ደረቅ ላሞ <mark>ቸ</mark>	
	C GROWING	አነስተኛ ወጪ ዋጋ: እያደጉ ያሉ እንስሳት	
ኢትዮጵያዊ	D ANLSIS-L	ትንታኔ: እርሻ / ደረቅ ላሞች	
	E ANLSIS-G	ትንታኔ: የሚያድጉ እንስሳት	
	F FEEDLIST	የምኅብ ቤተ-መጽሐፍት አርታዒ	
	G DELIVERY	ምኅብ በመጫን እና በመትከል	
	H FEEDTAG	മെപ്പെ സം മ	

SUSTAINABLE AGRICULTURE at

Improving Production

BRIEFING ROOM

Joint US-EU Press Release on the Global Methane Pledge

SEPTEMBER 18, 2021 • STATEMENTS AND RELEASES

Reducing methane gas is the fastest way to address climate change in the short term.

Methane emissions have contributed to roughly 30% of current warming, causing harm to communities around the globe. Reducing methane by 45% is crucial to reducing warming by 0.3 degrees Celsius by 2040 and putting us on a path to a healthy future. nited States and European Union announced today the Global Methane , an initiative to reduce global methane emissions to be launched at the mate Change Conference (COP 26) in November in Glasgow. President and European Commission President Ursula von der Leyen urged ies at the U.S.-led Major Economies Forum on Energy and Climate to e Pledge and welcomed those that have already signaled their support.

ne is a potent greenhouse gas and, according to the latest report of the overnmental Panel on Climate Change, accounts for about half of the 1.0 Celsius net rise in global average temperature since the pre-industrial pidly reducing methane emissions is complementary to action on dioxide and other greenhouse gases, and is regarded as the single most ve strategy to reduce global warming in the near term and keep the goal ting warming to 1.5 degrees Celsius within reach.

Other Solutions

- Animal Breeding and Management (5)
- Feed management, diet formulation and precision feeding (4)
- Forages (8)
- Rumen manipulation (16)

Conclusions

- Several solutions to mitigate GHG emission exist
- For methane some exciting and practical solution on the way – still not on the market
- In low income countries methane intensity can be substantially reduced
- Next 5 year ~30% reduction in GHG

Acknowledgments

BLUE OCEAN BARNS Solving agriculture's biggest climate challenge.

UF IFAS

STATESA

MOOTRAL

SUSTAINABLE AGRICULTURE at UC

BILL& MELINDA GATES foundation

Thank You!

"It must be my agent. I got a gig sequestering carbon."

Ermias Kebreab <u>ekebreab@ucdavis.edu</u>

go.ted.com/ermiaskebreab