Activities & Research

at the Mazingira Centre at ILRI in Kenya

Claudia Arndt, Cesar Patino, Sonja Leitner, Michael Graham, Alice Onyango, Phyllis Ndung'u, Paul Mutuo, Daniel Korir, George Wanyama, and many more

Claudia Arndt, PhD

Senior Scientist Team Lead of the Mazingira Centre

Mazingira Centre - Mandate

- Generate environmental baseline data of livestock production systems
- Test interventions to reduce environmental impact of livestock
- Serve as center for capacity building & hub for scientific exchange in sub-Saharan Africa

Mazingira Centre

Mazingira Centre - Vision

 To test and develop Mitigation & Adaptation strategies that increase livestock production while decreasing GHG emissions, resource use, and environmental degradation

Mazingira Centre

GHG Emissions From Livestock Value Chain

Africa

and a alart

Global

Research Facilities

Mazingira Centre Facilities

- Animal GHG emission measurement facilities
- Manure, soil, and water GHG emission measurement facilities & equipment
- Landscape GHG and environmental measurement capacities
- Laboratories
 - GC Lab
 - Animal nutrition lab
 - Soil and Manure Lab

Animal GHG Emission Measurement Facilities

3 Large Ruminant3 Small RuminantMobile Lab & AnimalSF6ChambersChambersChamber(under development)(yet to be deployed)

Manure GHG Emission Measurement Facilities

Chambers for manure heap measurements (9 with 100 kg capacity, 30 with 250 kg capacity)

2 Fixed-dome biodigesters

Lab Manure GHG Emission Measurement Equipment

175 Anaerobic digestion/biogas batch bottles

150 in-vitro manure incubation jars

4 Continuously Stirred Tank Reactors (CSTR) (to be set up in 2023)

Field manure, soil, and water GHG emission measurement equipment

18 automatic soil GHG chambers + Picarro laser analyzer (soon to be deployed with mobile field lab) >300 manual chambers for field GHG measurements (with GC or Laser/IRGA) 3 floating chambers for water GHG measurements

Landscape GHG and Field Measurement Equipment

2 Eddy Covariance Flux Towers (CO₂, H₂O, CH₄)

1 FLoX box (Plant fluorescence → photosynthesis) 1 Lysimeter 16 Weather (evapotranspiration stations (TAHMO → drought stress) weather network)

1 Root scanner in Eddy tower footprint (root growth dynamics)

Landscape GHG and Field Measurement Equipment

20 GPS collars for cattle & small ruminants 10 Camera traps (livestock/wildlife counting & plant phenology)

1 DJI Drone

GHG Measurement Lab

6 Gas Chromatographs (N_2O , CH_4 , CO_2) (SF_6 will be added)

3 Picarro Laser Analyzers (N₂O, CH₄, CO₂, H₂O, NH₃)

1 Los Gatos Research (LGR) Analyzer (CH_4 and N_2O)

LI-850 CO₂/H₂O Gas Analyzer

Animal Nutrition Lab

- Dry matter (DM)
- Ash
- Crude fiber (CF)
- Neutral detergent fiber (NDF)
- Acid detergent fiber (ADF)
- Acid detergent lignin (ADL)
- Crude Protein (CP)
- Total carbon and nitrogen (CN)
- Gross energy content (GE)
- LACTOSCAN milk analyzer

Bomb Calorimeter

Soil & Manure Lab

- Dry matter (DM)
- Ash
- Volatile solid (VS)
- pH
- Soil texture
- Bulk density
- Total carbon and nitrogen (CN)
- Nutrients (ammonium, nitrate, Olsen P, total P)
- Microbial Biomass C and N
- Total organic carbon (TOC), dissolved organic carbon (DOC) and total nitrogen (TN) in aqueous samples (e.g. manure leachate, urine and water samples)
- Soil physics (pF pressure curves)

2 Ways To Estimate Enteric CH₄ Emissions

Direct

In-vivo measurements using

Chambers or SF6

Animal

measurements

Indirect

Basis for GHG Inventories & intervention modelling

GHG emissions = Animal population * Emission

factor

Emissions factor is estimated based on activity data

GHG equations developed from data of direct emissions

measurements in the Global North

Livestock Emission Data From African Systems

Stock Take

All © Sonja Leitner

Direct & indirect GHG emissions estimates for enteric CH₄ emissions from African Livestock¹

- Few studies on direct and indirect
- Very little data on small ruminants

Measurement	Number of studies	% of total	studies
Cattle	14	70%	
Direct	6		30%
Indirect	8		40%
Small Ruminants	6	30%	
Direct	2		10%
Indirect	4		20%
Total	20		

Complete study: Poster #93 Graham et al.

¹Source: Graham et al., unpublished..

In-vivo Enteric CH₄ Emission Measurements at Mazingira Centre

- Severe below-maintenance feed intake increases methane yield from enteric fermentation in cattle (<u>Goopy *et al.*, 2020</u>)
- Weight gain and enteric methane production of cattle fee on tropical grasses (Napier, Rhodes, *Brachiaria*) (Korir et al. accepted in Animal production Science)
- Performance and enteric methane emission of tropical cattle supplemented with either concentrates or tannin-rich leguminous forage (Poster #136 by Korir et al.)
- Impact of Haemonchus contortus infection of Red Maasai and Dorper lambs on enteric methane emissions (Poster #176 by Mwangi *et al.*)
- Effect of gastro-intestinal tract parasites and tannins in sheep (trial on-going)

Indirect GHG Estimations by Mazingira

- Activity data collection via household surveys
 - Calculation of enteric and manure GHG emissions based on IPCC 2006 methodology
 - Protocol for activity data collection for Tier 2 EF generation for <u>enteric CH₄</u> and <u>manure CH₄ and N₂O</u>

Research Sites

(Cattle & Small Ruminants)

- Burkina Faso
- Kenya
- Ethiopia
- Tanzania
- Uganda

Publications by Mazingira using indirect GHG Estimations

- Farm-level emission intensities of smallholder cattle (*Bos indicus*; *B. indicus–B. taurus crosses*) production systems in highlands and semi-arid regions (<u>Ndung'u et al., 2022</u>)
- Data describing cattle performance and feed characteristics to calculate enteric methane emissions in smallholder livestock systems in Bomet County, Kenya (<u>Ndung'u et al., 2021</u>)
- Calculation of new enteric methane emission factors for small ruminants in western Kenya highlights the heterogeneity of smallholder production systems (<u>Goopy et al., 2021</u>)
- Improved region-specific emission factors for enteric methane emissions from cattle in smallholder mixed crop: Livestock systems of Nandi County, Kenya (<u>Ndung'u et al., 2020</u>)
- A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa Results for Nyando, Western Kenya, (<u>Goopy et al., 2018</u>)
- Improved Emission Factors and Intensities for African Livestock Systems for GHG Accounting and Mitigation – Case studies in Kenya (KE) (Poster #178 Ndung'u et al.)

Thank you very much for your attention!

Better lives through livestock

Claudia Arndt, PhD <u>claudia.arndt@cgiar.org</u>

