

FEED THE FUTURE INNOVATION LAB FOR LIVESTOCK SYSTEMS University of Florida Global Nutrition Symposium Theme: Nurturing development: Improving human nutrition with animal-source foods March 29 to 39, 2017

Improving availability of ASF Challenges and Opportunities

Khieu Borin Director General for Local Community, MoE

CONTENT

- Availability and accessibility to ASF
- Composition of livestock farms
- Structure and conditions of livestock producers
- Constraints and Opportunities in livestock production
 Taking home messages

How can ASF improve?

- 90% keep 12.7±0.74 (5-23 heads) chickens,
- 67% keep 2.37±0.24 (1-5 heads) cattle,
- 46% keep 1.41±0.16 (1-5 heads) pigs,
- 24% kept 6.41±2.03 (1-40 heads) ducks, and
- 15% keep 0.50±0.06 (1-3 heads) buffalos.

Structure of Livestock producers

Subsistent farmers Self-sufficient farmers Large farms

Subsistent farmers

 Produce for own consumption and surplus to local market

low input-output as way to mitigate risk (diversification) and

use local available resources.

- They are declining exit or pass to selfsufficient.
 - Change to medium or large scale
 - New alternative incomes work at factories, construction

Self-sufficient farmers

- Produce for market contract farming
- Require updated technologies
- Credit for the expansion of their business.
- Largely dependent on purchased inputs
- Do other farm activities but more focus on unique market commodity

Large farm

- Sound higher bio-security practice
- Geographic concentration of waste
 - ✓ technologies available to reduce environmental impact
 - expensive to return nutrients back to the soil
- Contract farming or/and own in-out system

These have been almost always identified as the constraints of farmers however no systematic solutions provided?

> Benefit from livestock production

ο

Poor access to market and information

Limited access to financial capital, agriinsurance and risk reduction tools

Limited access to quality vet services and extension

limited capacity to solve technical barriers

Diseases and solutions

Descriptions	SMF	LF
Vaccination, % -Salmonella -Pasteurella -CSF -FMD Aujeszky -PRRS	16.2 35.1 94.5 56.8 27 73	30 30 90 40 30 90
Disease outbreaks, % -Salmonella -Pasteurella -CSF -FMD Aujeszky -PRRS	91.4 26.5 20.6 23.5 11.8 8.8 55.9	60 - - 33.3 - 33.3 83.3
Treatment, % -VAHWs -Private vet -Treat by themselves -Vet from contract farming	100 35.3 2.9 70.6	100 - - 57.1 71.4

Rice straw

55% is removed for animal feed
45% is left in the field.
incorporate into the soil
Burning

Rice straw urea treatment Rice straw plus supplements

Mean values of daily weight gain

Level of sun dried cassava foliage, % live weight, DM basis

Performance of yellow cattle fed cassava pulp

0.9 kg DWG/day

Composition	kg/day		
Cassava pulp	13		
Urea	0.078		
Brewers grains	4.46		
Rice straw	1.44		
Minerals	0.039		
Total DM	5.3		

Crickets farming

			%Moiste	%Crude	%Crude	%Crude
N0	Name	%Dry matter	r	Protein	Ash	fiber
1	Whole cricket meal	94.8	5.23	65.2	4.06	11.8
2	Leg cricket meal	96.8	3.21	67.5	5.24	13.2

Technologies and adoption

Devendra and Leng 2011 reviewed 12 projects mostly from 1990s

- 92% consider successful but "SCALING UP" is the matter.
- Technologies are available but they are not beyond project lifetime.

Why could these introduced technologies be wider adopted?

Messages to take home

Does cash income and/or nutrition drive ASF from smallholders point of view?

- What are key starting points when smallholder farmers are the target?
- What should be the effective and efficient ways to promote livestock production?
- How best can knowledge generated be shared and used by farmers?

Thanks