Mycotoxins in Animal Feed: Risks to Animal & Human Health

Felicia Wu, PhD

John A. Hannah Distinguished Professor Department of Food Science & Human Nutrition Department of Agricultural, Food, and Resource Economics Michigan State University

USAID Livestock Systems Innovation Lab Symposium University of Florida, 30 March 2017

Presentation outline

- What are mycotoxins?
- Key agricultural mycotoxins in animal feed
- US regulations: mycotoxins in animal feed
- Animal health effects
- Potential human health effects
- What can we do about it?

Mycotoxins: What are they?

- Toxic & carcinogenic chemicals produced by fungi
- Long history of mycotoxins affecting society
 - Leviticus 14:37
 - 11th c.: *Claviceps purpurea* produces ergot in rye → St. Anthony's Fire
 - Mysterious human & animal deaths in 1930s (Great Depression horses)
 - 1960 aflatoxin discovery: UK turkey deaths
 - Today: several dozen mycotoxins identified

 \checkmark

Major classes of mycotoxins, associated foods & health effects, & species affected

Mycotoxin	Produced by	Chemical structure	Contaminated products	Animals affected	Clinical effects
Aflatoxin	Aspergillus flavus; A. parasiticus		Corn, peanuts, cottonseed, tree nuts, dairy products	Swine, dogs, fish, cattle, poultry, humans	Liver lesions, liver cancer, growth impairment
Fumonisin	<i>Fusarium</i> spp		Corn, silage	Swine, horses, humans	Pulmonary edema, leukoencephalomalacia (horses), neural tube defects, growth impairment
Ochratoxin	Aspergillus, Penicillium spp		Cereals (esp. oats), nuts, coffee, grapes	Swine, humans	Kidney and liver damage, cancer
Deoxynivale nol (vomitoxin)	Fusarium spp		Wheat, barley, oats, corn	Swine, cattle, poultry, horses, humans	Feed refusal, anorexia, vomiting, reduced growth
		OH CH2 C			

US Food & Drug Administration mycotoxin regulations, animal feed

Aflatoxin (action levels)

Class of Animal	Action level
Finishing beef cattle	300 ppb
Beef cattle, swine or poultry	300 ppb
Finishing swine	200 ppb
Breeding cattle & swine, mature poultry	100 ppb
Dairy animals, pets	20 ppb

Fumonisin (industry guidelines)

Class of Animal	Industry guideline
Swine and Catfish	10 ppm
Breeding Ruminants, Poultry, Mink	15 ppm
Ruminants >3 months; Mink for pelt production	30 ppm
Poultry for Slaughter	50 ppm
Horses	5 ppm

DON (industry guidelines)

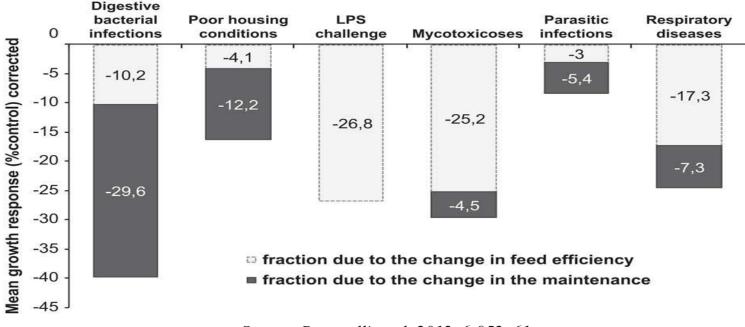
Class of Animal	Industry guideline
Ruminating beef and feedlot cattle older than 4 months	10 ppm
Chickens	10 ppm
Swine & all other animals	5 ppm
All other animals	5 ppm

Occurrence of mycotoxins in animal feed

Worldwide mycotoxin survey in >25,000 finished feed samples: 81% samples contaminated with at least 1 mycotoxin (Marugesan et al. 2015)

Parameters	AF	DON	FUM	OTA
Percent positive (%)	40	60	72	36
Average level (µg/kg)	7	280	687	5
Maximum (µg/kg)	1,165	9,903	10,282	595

Economic impacts:


- >\$1 billion annual loss in 2017 USD from mycotoxins in US crops (Vardon et al. 2003)
- Economic losses due to effects on livestock productivity and costs of meeting regulatory requirements

Animal health Impacts:

- Reduced feed efficiency
- Gastrointestinal dysfunction
- Immune system dysfunction

Mycotoxins reduce animal feed efficiency

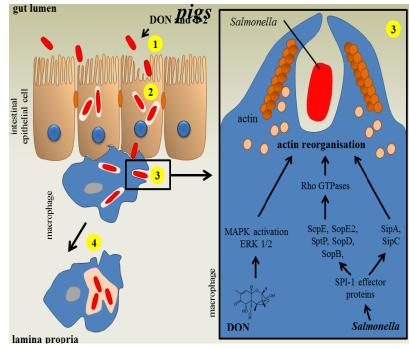
At mycotoxin doses found in real animal feed, mycotoxicoses can cause 30% reduction in growth, 85% of which is attributable to feed inefficiency (meta-analysis of swine data).

Source: Pastorelli et al. 2012, 6:952-61

• Why might this be happening?

Mycotoxins cause gastrointestinal dysfunction (cytokine expression)

• Cytokine expression within the intestine of mammals due to exposure to DON and fumonisin [FB] (Bracarense et al. 2012). Aflatoxin has similar effects (Turner et al. 2007).


		Diet treatment						
	Control		DON		FB		DON + FB	
Cytokine	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM
Intestinal portion								
Jejunum								
IL-1β	1-00 ^a	0.17	1.78 ^b	0.12	1.34 ^a	0.11	1.46 ^{a,b}	0.14
TNF-α	1.00 ^a	0.08	1.29 ^a	0.12	0.88 ^a	0.14	1.56 ^a	0.33
IL-6	1.00 ⁸	0.12	2.17 ^b	0.30	1.14 ^a	0.11	1.35 ^a	0.14
IL-8	1.00 ^a	0.09	1.78 ^a	0.52	1.38 ^a	0-40	1.02 ^a	0.12
MIP-1B	1.00 ^a	0.08	1.42 ^b	0.14	1.36 ^a , ^b	0.18	1.27 ^{a,b}	0.16
IL-2	1-00 ^a	0.16	1.80 ^b	0.25	1.74 ^a , ^b	0.31	1.56 ^{a,b}	0.26
IL-12p40	1.00 ^a	0.09	1.71 ^b	0.26	1.36 ^a , ^b	0.13	2.01 ^b	0.49
IFN-7	1-00 ^a	0.16	1.29 ^{a,b}	0.08	1.43 ^b	0.10	1.35 ^{a,b}	0.17
IL-10	1-00 ^a	0.11	1.34 ^{a,b}	0.24	1.51 ^b	0.19	1.63 ^b	0.17
lleum								
IL-1β	1-00 ^a	0.19	2.00 ^b	0.19	1.73 ^b	0.24	1.63 ^b	0.13
TNF-α	1.00 ^a	0.08	1.49 ^b	0.10	1.42 ^b	0.11	1.71 ^b	0.23
IL-6	1-00 ^a	0.20	2.13 ^b	0.21	1.02 ^a	0.13	0-96 ^a	0.24
IL-8	1.00 ^a	0.18	1.18 ^a	0.08	1.48 ^a	0.38	1.53 ^a	0.30
MIP-1B	1.00 ^a	0.06	1.50 ^a	0.30	1.19 ^a	0.07	1.42 ^a	0.22
IL-2	1-00 ^a	0.12	1.00 ^a	0.22	1.25 ^a	0.16	1.04 ^a	0.11
IL-12p40	1.00 ^a	0.07	1.04 ^a	0.11	1.09 ^a	0.07	1.34 ^a	0.14
IFN-y	1-00 ^a	0.12	1.43 ^a	0.21	1.26 ^a	0.09	1.90 ^a	0.48
IL-10	1.00 ^a	0.13	1.14 ^a	0.12	1.23 ^a	0.14	1.57 ^a	0.38

Source: Bracarense et al. Br. J. Nutr. 2012, 107:1776-86

Mycotoxins change intestinal epithelium, increasing animal susceptibility to infectious diseases

- DON acts as a predisposing factor by damaging the intestinal mucosa, leading to leakage of nutrients into the intestinal lumen
- Broiler chickens fed a diet contaminated with 5 mg DON/kg of feed were found to be more prone to develop necrotic enteritis lesions compared to controls in a normal diet (Antonissen et al. 2014)
- Moreover, swine exposed to aflatoxin in feed experienced **increased** proinflammatory cytokines, but **reduced** vaccine efficacy (Meissonnier et al. 2008)

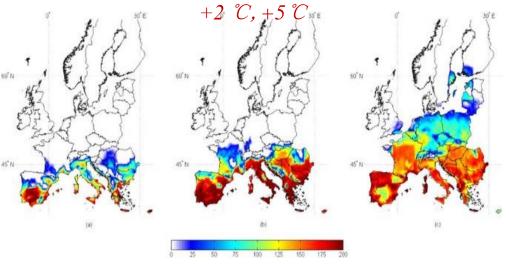
The impact of DON and T-2 toxin on a Salmonella Typhimurium infection in

Antonissen et al. Toxins. 2014, 6, 430-452

If livestock consume mycotoxins, what is **human health** impact?

- Dairy animals that consume aflatoxin B1 secrete aflatoxin M1 (AFM1) in milk
- AFM1 has 10% cancer potency of AFB1 (JECFA 2001)
- FDA regulates AFM1 at 0.5 ug/kg allowable in dairy (EU: 0.05 ug/kg)
- Ochratoxin A bioaccumulates in animal blood and (to limited extent) swine muscle meat
- OTA risk highest for populations that consume blood sausage, black pudding, other blood products; and to limited extent, pork
- Some kidney toxicity risk

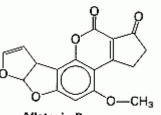
Country	Samula	% AF-positive	Min–Max	
Country	Sample	samples	(µg/kg)	
Kuwait	White cheese	80	0.024-0.45	
	Cheese	94	0.012-0.38	
	Yoghurt	56	0.0025-0.078	
Turkov	Dairy dessert	52	0.0015-0.08	
Turkey	Butter	100	0.01–7.0	
	Cream cheese	99	0–4.1	
	Yoghurt	88	0.01–0.48	
	White cheese	80	0.052-0.75	
	Cream cheese	72	0.058-0.79	
Turan	Livan cheese	65	0.03-0.31	
Iran	Cheese	53	0.082-1.25	
	White cheese	60	0.041-0.37	
	Feta cheese	83	0.15–2.4	
Libya	Cheese	75	0.11-0.52	
Brazil	Cheese	30	0.091-0.3	
Greece	Feta cheese	0	—	
Pakistan	White cheese	78	0.004–0.6	
	Cream cheese	59	0.004–0.46	
	Butter	45	0.004-0.41	
	Yoghurt	61	0.004-0.62	
Serbia	Milk products	38	0.27-0.95	


Occurrence of AFM1 in dairy products globally

Becker-Algeri et al. J Food Sci. 2016; 81:R544-52

What causes mycotoxin problems in animal feed?

- Climate factors
 - Warmer temperatures favor certain fungi
 - Drought, rainfall
- Environmental factors
 - Insect pests
 - Suitability of hybrid for region
- Crop & livestock grower practices
 - Harvesting when wet, rather than allowing crop to "dry down"
 - Insufficient drying
 - Wet, warm, pest-ridden storage conditions
 - Long periods of animal feed storage


Risk maps for aflatoxin contamination in maize at harvest in 3 different climate scenarios, present,

Battilani et al. Sci Rep. 2016;6:24328

Interventions to reduce mycotoxin risk

- Preharvest
 - Good agricultural practices
 - Genetically enhancing plants' resistance
 - Biocontrol
- Postharvest
 - Improved sorting, drying, food storage

Aflatoxin B₁ (Aspergillus flavus)

Dietary

- Improved dietary variety
- Dietary enterosorbents (binders)
 - NovaSil used commonly in US animal feed
- Dietary chemoprevention
 - Chlorophyll, chlorophyllin
 - Compounds in cruciferous & Allium vegetables
 - Triterpenoids (in grasses, herbs, apple peels)

Summary

- Mycotoxins have posed a danger to human & animal health for millennia
- Mycotoxins occur frequently in animal feed worldwide
- Despite regulations, animals can still suffer adverse health effects
- Interventions exist to reduce the mycotoxin problem